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ABSTRACT

A method for performing a global/local stress analysis is described and its

capabilities are demonstrated. The method employs spline interpolation functions

which satisfy the linear plate bending equation to determine displacements and

rotations from a global model which are used as "boundary conditions" for the

local model. Then, the local model is analyzed independent of the global model of

the structure. This approach can be used to determine local, detailed stress states

for specific structural regions using independent, refined local models which exploit

information from less-refined global models. The method presented is not restricted

to having a priori knowledge of the location of the regions requiring local detailed

stress analysis. This approach also reduces the computational effort necessary to

obtain the detailed stress state. Criteria for applying the method are developed. The

effectiveness of the method is demonstrated using a classical stress concentration

problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.
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Chapter 1

Introduction
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1.1 Overview

Discontinuities and eccentricities, which are common in practical structures,

increase the difficulty in predicting accurately detailed local stress distributions,

especially when the component is built of a composite material, such as a graphite-

epoxy material. The use of composite materials in the design of aircraft structures

introduces added complexity due to the nature of the material systems and the

complexity of the failure modes. The design and certification process for aerospace

structures requires an accurate stress analysis capability. Detailed stress analyses of

complex aircraft structures and their subcomponents are required and can severely

tax even today's computing resources. Embedding detailed "local" finite element

models within a single "global" finite element model of an entire airframe structure

may be impractical due to the computational cost associated with the large num-

ber of degrees of freedom required for such a global detailed model. If the design

load envelope of the structural component is extended, new regions with high stress

gradients may be discovered. In tllat case, the entire analysis with embedded local

refinements may have to be repeated and thereby further reducing the practicality

of this brute force approach for obtaining the detailed stress state. Adaptive mesh

refinement methods may be used to embed the local refinement in the global finite

element model. The increased number of degrees of freedom again reduces the prac-

ticality of this approach in the global/local analysis realm. Also in structural appli-

cations, triangular elements introduced through unstructured remeshing methods



may adversely affect the solution because they are inherently stiffer than quadri-

lateral elements, and hence may require a more complicated structured remeshing

method.

The phrase global/local analysis has a myriad of definitions among analysts.

The concept of global and local may change with every analysis level, and also from

one analyst to another (see Fig. 1.1). An analyst may consider the entire aircraft

structure to be the global model, and a fuselage section to be the local model. At

another level, the fuselage or wing may be the global model, and a stiffened panel is

tile local model. Laminate theory is used by some analysts to represent the global

model, and micromechanics models are used for the local model. At the materials

level, global/local variational models (e.g., refs. [1, 2]) may be used to define detailed

response functions in a particular, predetermined local region of interest, while

the remainder of the global domain may be represented by effective properties.

The global-local model is developed to examine the elastic stress field in laminates

containing many layers. In the context of global/local analysis, the laminate is the

global model, while each layer is a local model. The upward-intergrated top-down-

structured analysis [3] makes use of several hierarchical global/local levels to perform

a nonlinear structural analysis of a helicopter composite blade/vane component. In

the iterative solution process, the blade/vane component is initially considered as

the global model while the laminate is the local model. At a subsequent analysis

level, the laminate becomes the global model and a unidirectional ply is the local

model. Tile matcrial properties are updated during each iteration and used in the

"upward" analyses of tile lamina, laminate, and the global structure.

A detailed, local analysis may be performed completely independent of the

global analysis whereby the number of degrees of freedom in the local analysis is

limited to only those in the local refined model. The global/local stress analysis
!



methodology, herein, is defined as a procedure to determine local, detailed stress

states for specific structural regions using information obtained from an independent

global stress analysis. The global/local analysis methodology in this study employs

the finite element method in both global and local analyses.

1.2 Review of Previous Work

Since a single definition of global/local analysis is not practical, a wide range of

information is found in the open literature (e.g., refs. [4-20]). Global/local analysis

research areas include such methods as substructuring, submodeling (e.g., linear

constraint methods, and the specified boundary stiffness/force method) and exact

zooming. In addition, hybrid techniques such as reduced basis methods are other

examples of global/local analysis methods.

1.2.1 Substructuring

The substructuring technique is perhaps the most common technique for

global/local analysis in that it reduces a complex structure to smaller, more man-

ageable components, and simplifies the structural modeling. A specific region of

the structure may be modeled by a substructure or multiple levels of substructures

to determine the detailed response. Wilkins [6] made use of multi-level substruc-

turing or "telescoping" to study damage tolerance of composite structures. In some

nonlinear problems, substructuring may be used if the material or geometric non-

linearity is localized, while the remainder of the structure remains linear [7, 8]. The

part of the structure wlfich is assumed to remain linear during loading is defined

as one or multiple substructures, whilc the part of the structure which undergoes

nonlinear deformation is defined as a nonlinear substructure. Here, the linear part

of the structure may be considered the global model, and the nonlinear region is

the local model.
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1.2.2 Submodeling

Submodeling refers to any method that uses a node by node correspondence

for the displacement field at the global/local interface boundary. The ANSYS finite

element analysis program [9] employs such a method. The analyst may define an

independent, more refined local model by transitioning from coarsely-spaced bound-

ary nodes of the global model to a more refined internal local model using triangular

elements (see Fig. i.2). Research has also been proposed with variable-order el-

ements for mesh transitioning (e.g., refs. [10, 11]) as shown in Fig. 1.3. Griffin

and Vidussoni [12] employ a form of submodeling to perform a two-dimensional

to three-dimensional global/local analysis. The specified boundary displacement

(SBD) method [13, 14] involves developing a subregion model of the portion of the

structure of interest and applying displacement boundary conditions derived from

the global structural solution to simulate the effect of the rest of the structure upon

the subregion. The SBD method uses the finite element shape functions to produce

displacement constraints to be applied to the specified boundary nodes. The rigid

(RSPLINE) element in MSC/NASTRAN [15] provides a straightforward method for

changing mesh size while providing an approximation to the actual motions at the

dependent degrees of freedom. However, since the interpolation is one-dimensional,

it does not guarantee the continuity of stresses across the global/local interface

boundary.

The linear constraint method [13, 14] uses a global structural model which has

been locally refined in the area of interest. Linear constraint equations, based on

the elemenl shape functions, are applied to any additional nodes on the global/local

interface boundary added for element refinement. One of the drawbacks of this

method is that, the entire global model must be reanalyzed every time the local

area of interest changes or the mesh refinement of the area of interest changes.

'4



The specifiedboundary stiffness/force(SBSF)method [16]usesan independent

subregionmodel with stiffnessesand forces as boundary terms. Thesestiffnesses

and forcesrepresentthe effect of tile rest of the structure upon the subregion. The

stiffnessterms are incorporatedin the stiffnessof the subregionmodeland the forces

are applied on the boundary of the local model.

1.2.3 E_cient and Exact Zooming

An emcient zooming technique, as described in reference [17], employs static

condensation and exact structural reanalysis methods. Although this eft]cient zoom-

ing technique involves tile solution of a system of equations of small order, all the

previous refinement processes are needed to proceed to a new refinement level.

An "exact" zooming technique [18] employs an expanded stiffness matrix approach

rather than the reanalysis method described in reference [17]. The "exact" zooming

technique utilizes results of only the previous level of refinement. For both meth-

ods, separate locally-refined subregion models are used to determine the detailed

stress distribution in a known critical region. The subregion boundary is coincident

with nodes in the global model or the previously refined subregion model which

is akin to the submodeling technique discussed in the preceding subsection. The

"efficient" and "exact" zooming techniques differ in the matrix operations used to

condense out the degrees of freedom outside of the subregion area. The stiffness

terms for the locally-refined region are added to the stiffness matrix of the global

structure. The degrees of freedom corresponding to the nodes in the global model

outside the locally-refined region are condensed out from this augmented stiffness

matrix. The system is, therefore, reduced to one that involves the degrees of free-

dom of the global model within the locally-refined region of the structure and the

degrees of freedom of any additional nodes introduced by the refinement process.

The locally-refining process may be continued with multiple levels of local refine-

ment until satisfactory results are obtained. For multiple levels of local refinement,
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displacementscontained in the final, most refined portion of the structure are ob-

tained first. In tile "exact" zooming method, the displacements in the final, most

refined subregion are obtained on the basis of the stiffness or flexibility terms of

tile previous locally-refined region only. Next, the response in the global region,

as well as the response within various other levels of refinement, can be computed.

Although these methods are computationally expensive, the results presented for

an isotropic plate with a central hole are as accurate as a complete model with

embedded local mesh refinement and no constraint equations are introduced.

1.2.4 Hybrid Techniques_

In the global variational methods, the domain of the governing equation is

treated as a whole, and an approximate solution is constructed from a sequence

of linearly independent functions (i.e., Fourier series) that satisfy the geometric

boundary conditions. In the finite element method, the domain is subdivided into

small regions or elements within which approximating functions (usually low-order

polynomials) are used to describe the continuum behavior. Hybrid techniques, such

as the global/local finite element method as presented by Dong [19], make use of

two or more methods in different domains of the structure.

Global/local finite element anaiysls _may refer to an analysis technique that

simultaneously utilizes conventional finite element modeling around a local discon-

tinuity with classical Rayleigh-Ritz approximations for the remainder of the struc-

: [ -

ture. For example, Dong considers the natural frequency of a simply-supported

rectangular isotropic platewlth and without a hoiel By employing the Ritz method

to obtain an approximation sequence, the frequency of the plate with no hole may be

deduced from Hamilton's principle, ttoweVer, for the plate with a hole, the selection

of an approximation sequence that satisfies both the boundary conditions at the free

edge around the hole and the exterior edges is _difficult. The finite element method



may be employed,but is impractical due to the computational effort required to

obtain the solution. The Global-Local Finite Element Method (GLFEM) [19] is

an alternative approach. A local finite element mesh is established to model the

physical behavior around the hole. For a small hole, the frequency of the plate does

not change from that of the plate with no hole. Therefore, a global approximation

sequence may be used for the remainder of the plate. Continuity of the displace-

ments and rotations at the interface between the two regions must be enforced.

The computational effort is reduced as a result of the use of the limited number

of finite element degrees of freedom. The Global-Local Finite Element Method,

however, presupposes that the analyst can identify an approximation sequence for

the global behavior. The selection of this approximation sequence may, therefore,

restrict GLFEM to regular geometries and specific boundary conditions.

Problems with singularities (i.e., crack tips) limit the accuracy of an analysis

performed with conventional finite dements. To overcome the shortcomings of the

conventional finite element, the finite element analysis employs special crack tip

elements to model the existing singularities. However, experience and judgement

are required to select the appropriate element size and the number of terms in the

series expansion used to represent the mechanical field. The GLFEM provides an

alternative approach. In contrast to the preceding example of the GLFEM, Dong

models the local region around the crack tip with approximation functions. Beyond

tile crack tip, a region nlay be used which includes the approximation functions

and also the finite element representation. Outside the overlap region, conventional

finite elements may be used for the remainder of the structure. As in the previous

example, the approach is limited to problems for which the analyst can identify the

approximation functions.

Another type of hybrid method is the reduced basis method. A reduced basis

method uses a set of basis vectors (e.g., Rayleigh-Ritz vectors, vibration mode



shapes)to reduce the size of the problem. Reduced basis methods have been used

to identify the local geometrically nonlinear regions of structures. Then, a nonlinear

analysis of only these local regions may be performed. A mixed local and global

functions approach for the collapse of shell structures is presented in reference [20].

The approach is based on a mixture of global, reduced basis vectors and local, finite

element analysis. Conventional finite element modeling of the nonlinear system is

performed. The system of equations is reduced by selecting a limited number of

Rayleigh-Ritz functions (basis vectors). The complex nonlinear analysis strategy

and the difficulty in selecting the approximation functions reduce the viability of

this approach.

The aforementioned global/local methods, with the exception of the submod-

eling technique, require that the analyst know where the critical region is located

before performing the global analysis. However, a global/local methodology which

does not require a priori knowledge of the location of the local region(s) requiring

special modeling could offer advantages in many situations by providing the mod-

eling flexibility required to address detailed local models as their need is identified.

1.3 Objectives and Scope

The overall objective of the present study is to develop such a computational

strategy for obtaining the detailed stress state of composite structures. Specific

objectives are:

1. To develop a method for performing global/local stress analysis of com-

posite structures

2. To develop criteria for defining the global/local interface region and local

modeling requirements

3. To demonstrate the computational strategy on representative structural

analysis problems

8



The scope of the present study includes the global/local linear two-dimensional

stress analysis of finite element structural models. The method developed is not

restricted to having a priori knowledge of the locations of the regions requiring

detailed stress analysis. The guidelines for developing the computational strategy

include the requirements that it be compatible with general-purpose finite element

computcr codes, valid for a wide range of elements, extendible to geometrically non-

linear analysis, and cost-effective. In addition, the computational strategy should

include a procedure for automatically identifying the critical region and defining

the global/local interface region. Satisfying these guidelines will provide a general-

purpose global/local computational strategy for use by the aerospace structural

analysis community.

The organization of the remainder of this study is as follows. The global/local

methodology, as defined in the overview, is reviewed in Chapter 2. The global/local

terminology is discussed, and the approach for the complete global/local analysis

is outlined. The glob',d/local method is based on a spline interpolation of a global

solution to obtain "boundary conditions" for the local analysis. Global and local

modeling issues are discussed as well as the definition of the global/local interface

boundary and the global interpolation strategy. The mathematical formulation for

the spline interpolation is presented in Chapter 3. The spline interpolation func-

tions satisfy the linear plate bending equation (i.e., DV4w = q). The implemen-

tation of the spline interpolation is discussed. The computational strategy for the

global/local analysis is presented in Chapter 4. Numerical results are presented in

Chapter 5. Conclusions and recommendations are given in Chapter 6. The deriva-

tion of the spline interpolation function is presented in Appendix A. Runstreams for

tile global and local analyses of an isotopic panel with a circular cutout are given

in Appendices B and C.

9



Chapter 2

Global/Local Methodology

Global/local stress analysis methodology is defined as a procedure to determine

local, detailed stress states for specific structural regions using information obtained

from an independent global stress analysis. The local model refers to any structural

subregion within the defined global model. The global stress analysis is performed

independent of the local stress analysis. The interpolation region encompassing the

critical region is specified. A surface spline interpolation function is evaluated at ev-

ery point in the interpolation region yielding a spline matrix, S(x, y), and unknown

coefficients, a. The global field is used to compute the unknown coefficients. An

independent, more refined local model is generated within the previously-defined

interpolation region. The global displacement field is interpolated producing a local

displacement field which is applied as a "boundary condition" on the boundary of

the local model. Then, a complete local finite element analysis is performed.

The development of a global/local stress analysis capability for structures has

been underway for several years and has taken several different approaches as is

evident from the literature review. The methodology for a global/local analysis

generally involves-four key components. The first component is an "adequate"

global analysis. In this context, "adequate" implies that the global structural be-

havior is accurately determined and that local structural details are at least grossly

incorporated. The second component is a strategy for identifying, in the global

model, regions requiring further study. Tile third component is an interpolation

procedure that does not require coincident nodes along the global/local interface

boundary. Finally, the fourth component is an "adequate" local analysis. In this

10



context, "adequate" implies that the local detailed stress state is accurately de-

termined and that compatibility requirements along the global/local interface are

satisfied. The development of a global/local stress analysis methodology requires

an understanding of each key component and insight into their interaction.

The global/local stress analysis methodology presented herein provides an al-

ternative to existing strategies which require a priori knowledge of the location of

a critical region and often require embedding detailed fiuite element models in a

global finite element model to obtain an accurate detailed stress state. Unlike most

of the global/local methods reviewed, the method described does not require hav-

ing to know, a priori, the region(s) requiring a detailed stress analysis. In practice,

the global analysis model is "adequate" for the specified design load cases. How-

ever, these load cases frequently change in order to extend the operating region

of the structure or to account for previously unknown effects. In these incidents,

the global analysis may identify new "hot spots" that require further study. The

proposed methodology provides an analysis tool for these local analyses.

A global/local stress analysis methodology is described in subsequent sections.

The terminology used to describe the different components of the solution strategy

is discussed. The components of the global/local analysis method, which includes

global modeling, interpolation, and local modeling are discussed.

2.1 Terminology

The terminology of the global/local methodology presented herein is depicted

in Fig. 2.1 to illustrate the components of the analysis procedure. The global model

is a finite element model of a complete structure or a subcomponent of a structure

(see Fig. 2.1a). A region requiring a more detailed interrogation is subsequently

identified by the structural analyst. This region may be obvious, such as a region

around a cutout in a panel, or not so obvious, such as a local buckled region of

11



a curved panel loaded in compression. Because the location of these regiong are

usually unknown prior to performing the global analysis, the structural analyst

must develop a global model with sufficient detail to represent the global behavior

of the structure. An interpolation region is then identified around the critical region

as indicated in Fig. 2.lb. An interpolation procedure is used to deternfine the

displacements and rotations used as "boundary conditions" for the local model.

The interpolation region is tile region within which the generalized displacement

solution will be used to define the interpolation matrix. This matrix, discussed

in Chapter 3, consists of the coordinates and functions of the coordinates in the

interpolation region. The global/local interface boundary, indicated in Fig. 2.1c,

coincides with the intersection of the boundary of the local model with the global

model. The definition of the interface boundary may affect the accuracy of the

interpolation procedure and thus the local stress state. Criteria for defining the

interface boundary are discussed in Section 2.4. Tile local model lies within the

interpolation region as shown in Fig. 2.1c and is generally more refined than the

global model in order to predict more accurately the detailed state of stress in the

critical region. Tile coordinates or nodes of the local model need not be coincident

with any of the coordinates or nodes of the global model.

A schematic which describes the overall solution strategy is shown in Fig. 2.2.

The global/local interpolation procedure consists of generating a matrix based on

the global solution and a local interpolated field. The local interpolated field is that

field which is interpolated from the global analysis and is valid over the domain

of tt_e local model. Local stress analysis involves the generation of the local finite

element model, use of the interpolated field to impose conditions on the local model,

and the detailed stress analysis.

12



The global/local method describedherein may be usedto interrogate multiple

critical regionsof a global structure. The use of multiple regions is depicted in

the schematic shown in Fig. 2.3. Once the global analysis is performed, single

or multiple critical regionsmay be identified. Multiple interpolation regionsand

splinematrices may be defined. Multiple local models aregeneratedand the local

interpolated fields are obtained followed by the complete local analyses.Although

the definition of the multiple regionsand the multiple analysesmay be performed

sequentially, the approachis readily applicable to concurrentprocessing.

Multi-level global/local analysesmay alsobe performed. The global and local

modeldefinitions changeasthe levelsof the global/local analysisincrease.The local

region identified at tile first level becomesthe global model at the next level and

another local model is defined. The global/local analysismethod, then continues.

The multi-level analysismaybeusedfirst to obtain a local two-dimensionaldetailed

stressstate, and then to obtain anevenmoredetailed stressstate by a more refined

two-dimensional or three-dimensional loc'¢1analysis.

2.2 Global Modeling and Analysis

The development of a global finite element model of an aerospace structure for

accurate stress predictions near local discontinuities is often too time consuming

to impact the design and certification process. Predicting the global structural

response of these structures often has lnany objectives including determining overall

structural response, stress analysis, and internal load distributions. Frequently,

structural discontinuities such as cutouts are only accounted for in the overall sense.

Any local behavior is then obtained by a local analysis, possibly by another analyst.

The load distribution for the local region is obtained from the global analysis. The

local model is then used to obtain the structural behavior in the specified region. For

example, the global response of an aircraft wing is obtained by a coarse finite element

13



analysis. A typical subcomponent of the wing is a stiffened panel with a cutout.

Since cutouts are known to produce high stress gradients, the load distributions

from the global analysis of the wing are applied to the stiffened panel to obtain

the local detailed stress state. One difficulty in modeling cutouts is the need for

the finite element mesh to transition from a circular pattern near the cutout to

a rectangular pattern away from the cutout. This transition region is indicated

in Fig. 2.4 and will be referred to as a transition square (i.e., a square region

around the cutout used to transition from rings of elements to a rectangular mesh).

This transition modeling requirement impacts both the region near the cutout and

:the region away from the cutout. Near the cutout, quadrilateral elements may be

skewed, tapered, and perhaps have an undesirable aspect ratio. In addition, as the

mesh near the cutout is refined by adding radial "spokes" of nodes and "rings" of

elements, the mesh away from the cutout also becomes refined. For example, adding

radial spokes of nodes near the cutout also adds nodes and elements in the shaded

regions (see Fig. 2.4) away from the cutout. This approach may dramatically

increase the computational requirements necessary to obtain tile detailed stress

state. Alternate mesh generation techniques using transition zones of triangular

elements or multipoint constraints may be used; however, the time spent by the

structural analyst will increase substantially.

The global modeling herein, although coarse, is sufficient to represent the global

structural behavior. The critical regions have been crudely modeled to represent

their effect on the global solution. This modeling step is one of the key Components

of the global/local methodology discussed in this chapter since it provides an "ad-

equate" global analysis. Although the critical regions are known for the numerical

studies discussed in a Chapter 5, this a priori knowledge is not required but may

be exploited by the analyst.
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2.3 Local Modeling and Analysis

The local finite element modeling and analysis is performed to obtain a detailed

analysis of the local structural region(s). The local model accurately represents the

geometry of the structure necessary to provide the local behavior and stress state.

The discretization requirements for the analysis is governed by the accuracy of the

solution desired. The discretization of the local model is influenced by its proximity

to a high stress gradient.

One approach for obtaining the detailed stress state is to model the local region

with an arbitrarily large number of finite elements. Higher-order elements may

be used to reduce the number of elements required. Detailed refinement is much

more advantageous for use in the local model than in the global model. The local

refinement affects only the local model, unlike embedding the same refinement in

the global model which would propagate to regions not requiring such a level of

detailed refinement. A second approach is to refine the model based on engineering

judgement. Mesh grading, in which smaller elements are used near the gradient,

may be employed. An error measure based on the change in stress from element to

element may be used to determine the accuracy in the stress state obtained by the

initial local finite element mesh. If the accuracy of the solution is not satisfactory,

additional refinements are required. The additional refinements may be based on

the coarse global model or the displacement field in the local model which suggests

a third approach. The third approach is a nmlti-levcl global/local analysis. At

the second local model level, any of the three approaches discussed may be used to

obtain the desired local detailed stress state. Detailed refinement is used for local

modeling in this study.
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2.4 Global/Local Interface Boundary Definition

The definition of the global/local interface boundary is problem dependent.

The location of the nodes on the interface boundary need not be coincident with

any of the nodes in the coarse global model. Kelley [14] concludes that the distance

that the local model must extend away from a discontinuity is highly dependent

upon the coarse model used. The more accurate the coarse model displacement

field is, the closer the local model boundary may be to the discontinuity. This

conclusion is based on the results of a study of a flat, isotropic panel with a central

cutout subjected to uniform tension and extends to other structures with high stress

gradients.

Stresses are generally obtained from a dlsplacement-based finite element anal-

ysis by differentiation of the displacement field. For problems with stress gradients,

the element stresses vary from element to element, and in some cases this change,

Aa, may be substantial. The change in stresses, Aa, may be used as a measure of

the adequacy of the finite element discretization. Large A_r values indicate struc-

tural regions where more modeling refinement is needed. Based on this method,

structural regions with small values of Aa have uniform stress states away from

any gradients. Therefore, the global/local interface boundary should be defined in

region(s) with small values of Act (i.e., away from a stress gradient). Exploratory

studies to define an automated procedure for selecting the global/local interface

boundary have been performed using a measure of the strain energy. The strain

energy per unit area is selected since it represents a combination of all the stress

components instead of a single stress component. Regions with high stress gradients

will also have changes in tl_s measure of strain energy from element to element.
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2.5 Global/Local Interpolation Procedure

The global/local analysis method is used to determine local, detailed stress

states usingindependent, refined local models which exploit information from less

refined global models. A finite element analysis of the global structure is performed

to obtain its overall behavior. Finite element analyses can be performed in which

the mesh is successively refined until a converged solution is obtained. However, for

some structural analysis problems with high stress gradients, this approach becomes

infeasible due to the computational cost for the global finite element model. In these

cases, a critical region may be identified from the results of the global analysis.

The global solution may be used to obtain an applied displacement field along the

boundary (i.e., boundary conditions) of an independent local model of the critical

region. This step is one of the key components of the global/local methodology;

namely, interpolation of the global solution to obtain boundary conditions for the

local model.

Many interpolation methods are used to approximate functions (e.g., refs. [21-

23]). The interpolation problem may be stated as follows: given a set of function

values fi at n coordinates (zi,yi), determine a "best-fit" surface for these data.

Mathematically, this problem can be stated as

[S(zi,yi)] a._. = f_

a,,

(2.1)

where S(zi, Yi) is a matrix of interpolated functions evaluated at n points, the array

a defines the unknown coefficients of the interpolation functions, and the array f

consists of known values of the field being interpolated based on n points in the

global model.
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Common interpolation methods include linear interpolation, Lagrangian in-

terpolation and least-squarestechniquesfor polynomial interpolation. Elementary

linear interpolation is perhapsthe simplest method and is an often usedinterpola-

tion method in trigonometric andlogarithmic tables. Another method is Lagrangian

interpolation which is an extensionof linear interpolation' For this method, data

for n points are specified and a unique polynomial of degree n - 1 passing through

the points can be determined. However, a more common method involving a least-

squares polynomial fit minimizes the square of the sum of the residuals. The draw-

backs of least-squares polynomial fitting include the requirement for repeated so-

lutions to minimize the square of the sum of the residuals, and the development of

an extremely ill-conditioned matrix of coemcients when the degree of the approx-

imating polynomial is large. A major limitation of the approximating polynomials

which fit a given set of function values is that they may be excessively oscillatory

between the given points or nodes.
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Chapter 3

Mathematical Formulation

Spline interpolation is a numerical analysis tool used to obtain the "best" local

fit through a set of points. Spline functions are piecewise polynomials of degree rn

that are connected together at points called knots so as to have rn - 1 continuous

derivatives. The mathematical spllne is analogous to the draftman's spline used

to draw a smooth curve through a number of given points. The spline may be

considered to be a perfectly elastic thin beam resting on simple supports at given

points. A surface spline is used to interpolate a function of two variables and re-

moves the restriction of single variable schemes which require a rectangular array of

grid points. The derivation of the surface spline interpolation function used herein is

based on the principle of minimum potential energy for linear plate bending theory.

This approach incorporates a classical structural mechanics formulation into the

spline interpolation procedure in a general sense. Using an interpolation function

which also satisfies the linear plate bending equation provides inherent physical

significance to a numerical analysis technique. The spline interpolation is used

to interpolate the displacements and rotations from a global analysis and thereby

provides a functional description of each field over the domain. The displacement

and rotation fields are interpolated separately; that is, the out-of-plane deflections

and the bending rotations are interpolated independently rather than calculating

the bending rotations by differentiating the interpolated out-of-plane displacement

field. The separate interpolation of displacements and rotations provides a consis-

tent basis for interpolating solutions based on a plate theory with shear flexibility

effects incorporated.
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The derivation of the spline interpolation is presented. The implementation of

the spline interpolation consisting of the spline coefficients, constraint equations,

and the equation solver is discussed. The interpolation procedure which includes

the independent interpolation of the fields is discussed.

3.1 Derivation of the Spline Interpolation

The derivation of the spline interpolation used herein follows the approach

described by Harder and Desmarais in reference [24] and is included in Appendix A

for completeness. A spline surface is generated based on the solution to the linear

plate bending equation [24]

DV4w = q (3.1)

The solution of Eq. (3.1) in Cartesian coordinates may be written in the general

form
n

f(2,y) : (lO _- alX -_- a2y -4- Z FiT"2111T2 (3.2)

i=I

2 = (2 Xl) 2where r i - + (y -- yi) 2 n is the total number of nodes in the interpolation

region, and a0, al, a_ and Fi are undetermined coeflicients representing loads.

and

The n + 3 unknowns (a0, al, a2, Fi) are found by solving the set of equations:

/l

_-_ F_ :0 (3.3)
i=1

M

ZFizi = 0 (3.4)
i=1

M

F,w = 0 (3.5)
i=1

M

j=l

(3.6)
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2 )where rlj = (xi - zj) 2 + (Yi - yj)2 or in matrix form:

fg=Sa (3.7)

where S is tile spline coefficient matrix, a is the vector of unknown coefficients,

and fg is the vector containing the known values of the global field to be interpo-

lated (i.e., displacements). The constraint equations given in Eqs. (3.3)-(3.5) are

used to prevent Eq. (3.1) from becoming unbounded when expressed in Cartesian

coordinates.

Specifically, the vector a is defined to be

ao

al

a2

a= , F1

• Fn,

(3.8)

The vector fs is defined to be
'0

0

0

k

,fn.

(3.9)

The spline coemcient matrix is then given by

S

-0 0 0 1 1

0 0 0 zj z2

0 0 0 Yl Y2

1 z, y, r_lln(r_l + ¢) rl2ln(rl2+2 2 _)

r221n(r22+

: : : : :

2 2 ¢) 2 2 _)1 x_ y_ r_lln(r_l+ r_21n(%2+

.. 1

2 2 8)• . rlnln(rln +

•.

2 2 e)rnnln(rnn+

(3.10)
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where xi, yi and x j, yj in tile expression given for rij are coordinates of nodes in the

interpolation region and e is a parameter used to insure numerical stability for the

case when rij vanishcs.

The matrix S is formed, inverted, and multiplied by fg to compute the vector,

a. The vector a is then used to interpolate the local values through the following

equation:

n

fi = ao + alxi + a2yi + Z 2 2Fjrijlnrij; i = 1,2,...,/ (3.11)
j=l

where for ri_ = (zi - xj) _ + (yi + 9j) _, zi,yi are coordinates of the nodes in the

local model, x j, yj are coordinates of the nodes in the interpolation region, l is the

number of nodes of the local model where the interpolated field is required, and the

coefficients, ao, al, as, and Fj are contained in a.

Extensions have been made to the formulation presented above to include

higher-order polynomial terms (underlined terms in Eq. (3.12)). The extended

Cartesian form analogous to Eq. (3.2) which also satisfies Eq. (3.1) is written as

fg(x,y) -- ao + alx + a:y -F-a3x 2 + a4xy + asy 2 + a6x a + aTx2y+

7"L

asxY2 + a_93 + E Fir_ ln(r_) (3.12)
i=1

where

=ri -- -1- (Y -- Yi (3.13)

and xi,yi are the coordinates of the i-th node in the interpolation region. The

higher-order polynomial terms were added to help represent a higher-order bending

response than was being approximated by the natural logarithm term in the earlier

formulation. The additional terms increase the number of unknown coefficients and
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constraint equations to n + 10. The n + 10 unknowns (a0,al,a2,...,ag,Fi) are

found by solving Eq. (3.12) and the set of equations:

n n

EF, =o
i=1 i:l

=0

n

=o =o
i=1 i=1

n

i=1 i=1

Tt EL

i=1 i=1

'17, 'rl.

E : o E : o
i=1 i=1

(3.14)

The matrix form of the extended equations, Sga = fg, is given by

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 zl yl

1 z2 y2

: : :

1 xn Y,_

. ,

• ° •

0

0

0

0

0

0

0

0

0

0

v_
v_

y_

1 1

I" 1 X 2

Yl Y2

x_ x_

x_yl x2y2

v_ y_

V_m v_
fl_l fl12

a2_ fl22

" •

12_1 12_2 ...

1

T, n

2

X,nyn

v_
3

X n

X2yn

X 2
nYn

y_

f_en

_nn

ao ' 0

al 0

a 2 0

a3 0

a4 0

a5 0

0.6 0

a7 : 0

0,8 0

a9 0

F_ fl
F_ A

:

F. A

(3.15)

2 lrl(r_j + e) for i,j = 1,2, . ,n and rij, xi,Yi, and xj,yj are aswhere _ij = rij ..

defined in the earlier formulation. The extended local interpolation function is

similar to Eq. (3.12) except that it is evaluated at points along the global/local

interface boundary. That is,
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fg/l(zi,Yi) = ao -1- al_ei _-- a2yi t a3;ri 2 q- a4xiYi q- 359i'-" { a6,r_ 3-} a7xi2!li [

'n

asx'Yi2 + agYia + E Fjr_j ln(r_j); i = 1,2,...,/ (3.16)

j=l

Upon solving Eq. (3.15) for the coefficients (ao,a,,a2,...,ag,Fj), Eq. (3.16) is

used to compute the interpolated data at the required local model nodes. That is,

fg/l = Ss/la (3.17)

in matrix form:

3.2 Implementation of Spline Interpolation

The polynomial coefficients (a0,ax,a2,...,ag) of Eq. (3.16) are linear combi-

nations of the constants of integration in the polar coordinatc solution given in Eq.

(A.1) of Appendix A. The logarithmic coefficients ['i are given as

['i-- Pi
16_-D (3.18)

where pi is a point load applied at the coordinate (xi,yl) of the plate.

The first of the constraint equations in Eq. (3.14) states that the sum of the

applied point loads pi is equal to zero. The additional constraint equations state

that the sum of the first, second and third moments introduced by the applied point

loads Pi about tile x and y axes are equ_d to zero.

The _ij terms of the extended spline coefficient matrix given in Eq. (3.15) are

zero when i = j, since rii = (xi - xi) 2 + (Yi - Yi) 2 = 0. The matrix, Sg is not a

positive definite matrix since there exists a vector x with a single nonzero element

(i.e., x = {0,0,0,...,1}) for which xTSgx = 0. The positive definite condition

is used to show the stability and convergence of many linear solution techniques.

The zero diagonal presents some difficulty in factoring the Sg matrix. During the
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factorization process,zero diagonal elementsof the matrix may becomenonzero,

however, since Sii is zero, the factorization can not continue without pivoting.

Therefore, a method which employs pivoting is required. Gaussian elimination

with pivoting has been implemented ill the global/local interpolation procedure to

invert the spline matrix, $g.

3.3 Interpolation Procedure

Although Eq. (3.16) is derived from the linear plate bending equation, it may

be used to interpolate each displacement component u,v, and w, independently.

The interpolation of the inplane displacements, u and v is accurate provided the

inplane behavior can be represented by the interpolation function. If the full poly-

nomial and logarithmic expansion of Eq. (3.16) is not required to approxbuate

the displacement field, the associated coefficients vanish. The rotations 0,,0u, and

8_ are interpolated from the rotations in the interpolation region specified in the

global model instead of differentiating the out-of-plane displacement field or dif-

ferentiating the interpolation function for the out-of-plane deflection, w, to obtain

the rotations (e.g., w,,).

The global interpolation function fg given in Eq. (3.12) is evaluated at the

nodes in the interpolation region specified within the global model. In the matrix

form of Eq. (3.15), the matrix Sg is based on the coordinates (zi,yi) in the in-

terpolation region. The function vah, cs fg are the displacements and rotations at

the nodes in the interpolation region. These displacements and rotations have been

obtained from the global analysis. The vector a = {ai,Fi} T contains the unknown

coefficients of the interpolation function. The unknown coeffaclents a are computed

by solving a system of simultaneous equations. The interpolated data along the

global/local interface boundary are obtained by solving the system of equations

given in Eq. (3.17) for fg/l using the new spline coefficient matrix $g/! which is
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based on the coordinates along the global/local interface boundary and the vector

of coetTicients a.

In the present study, the interpolation procedure is used t,_ ohtain tile dis-

placements and rotations on the global/local interface boundary, ltowever, the

interpolation procedure may be used in general to interpoIate any field at any lo-

cation in the local model. The interpolation procedure was originally developed for

interpolating wing deflections and computing slopes for aeroelastic calculations.
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Chapter 4

Computational Strategy

The computational strategy described herein is implemented through the use

of the Computational Structural Mechanics (CSM) Testbed (see refs. [25] and

[26]). The CSM Testbcd is used to model and analyze both the global and local

finite element models of a structure. Two new computational modules or processors

were developed to perform the global/local interpolation procedure. Various other

Testbed processors are used in the stress analysis. The overall computational strat-

egy for the global/local stress analysis methodology is controlled by a high-level

procedure written using the command language of the Testbed called CLAMP, an

acronym for Command Language for Applied Mechanics Processors (see ref. [26]).

The command language provides a flexible tool for performing computational struc-

tural mechanics research.

4.1 Overview of the CSM Testbed

The field of computerized structural analysis is dominated by two types of com-

puter programs. One type is the huge, 2000 subroutine general purpose program

(see ref. [27]), that is the result of over a hundred man years of effort spanning more

than a decade. The other type is the relatively small, special-purpose code resulting

from a research environment that represents a one- to two-year effort for a specific

research application. This dichotomy has resulted in long delays in making research

technology available for critical structural analysis problems that the aerospace
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community faces. To accelerate the introduction of successful research technol-

ogy into large-scale applications programs, a modular, public-domain, machine-

independent, architecturally-simple, software development environment has been

constructed. This system is denoted the CSM Testbed and its concept is depicted

by a pyramid (see Fig. 4.1). The base of the pyramid is the computer and its

operating system. The computer operating system is provided by the computer

vendor and may be different for each vendor. The Testbed architecture insulates

both the engineer and the methods developer from those differences by providing a

consistent interface across various computer systems. The Testbed command lan-

guage CLAMP procedures and application processors may be accessed as part of a

methods research activity or as part of an application study. The methods devel-

opment environment of the CSM Testbed is further described by Gillian and Lotts

[26]. One goal of the CSM Testbed is to provide a common structural analysis

environment for three types of users -- engineers solving complex structures prob-

lems, researchers developing advanced structural analysis methods, and developers

designing the software architecture to exploit multiprocessor computers.

4.2 Global/Local Analysis Processors

Processor SPLN (see ref. [25]) evaluates the spline coefficient matrix Sg(xi, yi)

given in Eq. 3.15. The coordinates of the global model within the interpolation re-

gion are read from the Tcstbed data library. The spline coefficient matrix is formed,

inverted, and stored in the database. Other data associated with the interpolation

region (i.e., coordinates and node numbers) are also written to the database. The

matrix is evaluated once for each interpolation region specified.

Processor INTS (sec rcf. [25]) reads the sp]Jne coefficient matrix and the other

associated data from the Tcstbed data library. In addition, the displacement and

rotation components at each node within the interpolation region are read. Each
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field is independently used to define the vector fg in Eq. 3.15. Processor INTS

solves for a set of interpolation coefficients a = {al, Fi} T for each field and performs

the local interpolation for each field to obtain the "boundary conditions" for the

local model.

4.3 Global/Local Analysis Procedures

Runstreams are the vehicle used to perform structural analyses with the CSM

Testbed. The term "runstream" most commonly refers to the file (or files) used to

perform a specific analysis. A runstream will typically contain CLAMP directives

and procedures. The runstream which performs the complete, linear global analysis

of an isotropic panel with a circular cutout discussed in Chapter 5 is given in

Appendix B. A driver procedure calls subsequent lower level procedures to perform

the analysis.

The runstream used to generate the spline coefficient matrix, interpolate the

global solution, and perform the local analysis for the square local model (Model

LC1) discussed in Chapter 5 is given in Appendix C. A driver command file is used

in the analysis. This driver command file calls subsequent CLAMP procedures for

different phases of the analysis. These CLAMP procedures have been included in

Appendix C for completeness. The procedure flow and in-line comments have been

provided for both the global and local analyses.
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Chapter 5

Numerical Results

5.1 Problem Selection

The effectiveness of the computational strategy for the global/local stress anal-

ysis outlined in the previous chapters is demonstrated by obtaining the detailed

stress states for an isotropic panel with a cutout and a blade-stiffened graphite-

epoxy panel with a discontinuous stiffener. The first problem was selected to ver-

ify the global/local analysis capabilities while the second problem was selected to

demonstrate its use on a representative aircraft subcomponent. The objectives of

these numerical studies are:

1. To demonstrate the global/local stress analysis methodology, and

2. To obtain and interrogate the detailed stress states of representative sub-

components of complete aerospace structures.

All numerical studies were performed on the NASA Langley Research Cen-

ter Convex C220 minisupercomputer. The computational effort of each analysis is

quantified by the number of degrees of freedom used in the finite element model,

the computational time required to perform a stress analysis, and the amount of

auxiliary storage required. The computational time is measured in central process-

ing unit (CPU) time. The amount of auxiliary storage required is measured by the

size of the data library used for the input/output of information to a disk during a

Testbed execution.
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5.2 Isotropic Panel Results

Panels with cutouts are common subcomponents of structures in the aerospace

industry. Although, the use of composite materials has become prominent for sec-

ondary aircraft components, most primary aircraft components (i. e., wing, fuselage)

are currently made from isotropic materials (e.g., aluminum). The isotropic panel

with a cutout shown in Fig. 5.1 is an ideal structure to demonstrate the global/local

computational strategy, since closed-form elasticity solutions are available. Elastic-

ity solutions for an infinite isotropic panel with a circular cutout (e.g., Timoshenko

and Goodier [28]), predict a stress concentration factor of three at the edge of the

cutout. The influence of finite-width effects on the stress concentration factors

for isotropic panels with cutouts have been reported by Peterson [29]. The stress

concentration factor as a function of the cutout diameter to width ratio (?_) is

shown in Fig. 5.1. By including finite-width effects, the stress concentration factor

is reduced from the value of three for an infinite panel.

When using theoretical stress concentration factors Kt, one of the points that

should be borne in mind is that the stress concentration factors should be applied

to the nominal stresses. The nominal stresses are based on the same cross sectional

area as that used for the original determination of the stress concentration factor

[30]. This area is usually the net sectional area A,_ct which remains after any notch

has been cut. For the case of a cutout, the net sectional area corresponds to

A.c, = (W- 2 0)h = WhO -
--_-) (5.1)

where r0 is the radius of the cutout, W is the overall width of the panel and h is

the panel thickness. The nominal longitudinal stress (_r_)no,,_ for a uniform axial

load P can then be expressed as

P

(a_)_om - A_ct (5.2)
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where P is the applied load. From this value, the longitudinal stress resultant

(N_),_om for an isotropic panel is readily obtained as

(5.3)

The stress concentration factor Kt corresponds to the ratio of the maximum longi-

tudinal stress to the nominal longitudinal stress_

_ (N=)m_
gt (a_)norn or gt= (5.4)

The global/local linear stress analysis of the isotropic panel with a circular

cutout shown in Fig. 5.1 has been performed. The overall panel length L is 20 in.,

tile overall width W is 10 in., the thickness h is .1 in., and the cutout radius v0 is

0.25 in. This geometry gives a cutout diameter to panel width ratio of 0.05 which

corresponds to a stress concentration factor of 2.85 from Fig. 5.1. The loading is

uniform axial tension with the loaded ends of the panel clamped and the sides free.

The material system for the panel is aluminum with a Young's modulus of 10,000

ksi and Poisson's ratio of 0.3.

5.2.1 Global Analysis

Predicting the global structural response of these structures often has many

objectives including overall structural response, stress analysis, and determining

internal loads distributions. Frequently, structural discontinuities such as cutouts

are only accounted for in the overall sense.

The finite element model shown in Fig. 5.2 of the isotropic panel with a circular

cutout is a representative finite element model for representing the global behavior of

the panel as well as a good approximation to the local behavior. The finite element

model shown in Fig. 5.2, will be referred to as the "coarse" global model or Model

G1 in Table 5.1. The finite element model has a total of 256 4-node quadrilateral
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elements, 296 nodes, and 1644 active degrees of freedom for the linear stress analysis.

This quadrilateral element corresponds to a flat C 1 shell element which is based on

a displacement formulation and includes rotation about the outward normal axis.

Originally developed for the computer code STAGS (see refs. [31, 32]), this element

has been installed in the CSM Testbed software system and denoted ES5/E410 (see

ref. [25])

Contour plots of the inplane stress resultants obtained using the "coarse" global

model are shown in Figs. 5.3 and 5.4. The longitudinal stress resultant N, distri-

bution shown in Fig. 5.3 reveals several features of the global structural behavior of

this panel. First, away from the cutout, the Nz distribution in the panel is uniform.

Secondly, the N, load near the center of the panel is much greater than the N, load

in other portions of the panel due to the redistribution of the N, load as a result of

the cutout. Thirdly, the N, load at the edge of the cutout at ninety degrees away

from the stress concentration is small relative to the uniform far-field stress state.

The transverse inplane stress resultant Nu distribution shown in Fig. 5.4 indicates

a smaller stress gradient ninety degrees from the N, gradient. This gradient may

have a secondary influence on the definition of the global/local interface boundary.

The distribution of the longitudinal stress resultant N, at the panel mldlength

normalized by the nominal stress resultant is shown in Fig. 5.5 as a function of

the distance from the cutout normalized by the cutout radius. The results indicate

that high inplane stresses and a high gradient exist near the cutout. However, a

stress concentration factor of 2.06 is obtained from a linear stress analysis using

the "coarse" finite element model (see Fig. 5.2). This value is 28% lower than

the theoretical value of 2.85 reported by Peterson [29]. Therefore, even though

the overall global response of the panel is qualitatively correct as indicated by the
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stress resultant contours in Figs. 5.3 and 5.4, the detailed stress state near the

discontinuity is inaccurate.

Accurate detailed stress distributions require a finite element mesh that is sub-

stantially more refined near the cutout. Adding only rings of elements (Model G2

in Table 5.1) does not affect the dlscretization away from the cutout, however, the

stress concentration factor is still 22% lower than the theoretical value. To obtain

a converged solution for the stress concentration factor, a sequence of successively

refined finite element models were developed by increasing the number of radial

spokes of nodes and rings of elements in the region around the cutout. A con-

verged solution is obtained using a total of 3168 4-node quadrilateral shell elements

(ES5/E410) in the global model. Using an intermediate refined finite element model

with a total of 832 4-node quadrilateral elements, 888 nodes, and 5156 active de-

grees of freedom, a stress concentration factor of 2.72 is obtained which is within

4.6% of the theoretical solution. This finite element model is referred to as the

"refined" global model or Model G3 in Table 5.1. Normalized longitudinal stress

resultant N_ distributions are shown in Fig. 5.5 for the "coarse" global model (G1)

and the "refined" global model (G3). The stress gradient for this panel becomes

nearly zero at a distance from the center of the panel of approximately six times

the cutout radius.

The inplane stress resultant distributions obtained using the "refined" global

model are qualitatively the same as the distributions obtained for the "coarse" global

model (shown in Figs. 5.3 and 5.4, respectively). The value of the longitudinal

inplane stress resultant N_ near the center of the panel is larger for the "refined"

model than for tile "coarse" model indicating that the refined model more accurately

predicts the stress gradient near the cutout. The Nz load at the edge of the cutout
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ninety degreesawayfrom the stressconcentration is closerto zerofor the "refined"

model than for the "coarse" model.

The distribution of the strain energy for Model G1 is shown in Fig. 5.6. The

change in the strain energy per unit area within the transition square indicates

that a high stress gradient exists near the cutout and rapidly decays away from the

cutout. These results are consistent with the structural analyst's intuition, and the

local analyses described subsequently will further interrogate the region near the

cutout.

5.2.2 Local Analyses

A global/local analysis capability provides an alternative to global mesh re-

finement and a complete solution using a more refined mesh. For this example,

the "critical" region is well known and easily identified by even a casual examina-

tion of the stress resultant distributions given in Fig. 5.3. The global model, the

interpolation region and the local models considered are shown in Fig. 5.7. The

global model corresponds to the "coarse" global model (G1) and the shaded region

corresponds to the interpolation region which is used to generate the spline matrix

and to extract boundary conditions for the local models. As indicated in Fig. 5.7,

two different local models are considered: one square and one circular. Both local

models completely include the critical region with the stress concentration. The

boundary of the square local model coincides with the boundary of the transition

square in the global model. The circular model is inscribed in the transition square.

That is, the outer radius of the circular model is equal to half the length of a side of

the transition square. Both local models (Models LS1 and LC1 in Table 5.1) have

the same number of 4-node quadrilateral shell elements (512), number of nodes

(544) and number of degrees of freedom (3072). Both local models have only 62%

of ttle elements used in the refined global analysis. The global/local interpolation
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for both local modelsis performedfrom the data obtained from the "coarse" global

model analysis. The radius of the interpolation region Rl is 5.7r0 which includes

the 48 data points within the transition square of the global model.

The distribution of the longitudinal stress resultant N, at the panel midlength

normalized by the nominal stress resultant using the square local model is shown in

Fig. 5.8a as a function of distance from the cutout normalized by the cutout radius.

These results indicate that the global/local analysis based on the coarse global

solution and the square local model accurately predicts the stress concentration

factor at the cutout as well as the distribution at the global/local interface boundary.

A stress concentration factor of 2.76 is obtained which is within 1.5% of the "refined"

global model (G3) solution and 3.2% of the theoretical solution. A contour plot of

the longitudinal stress resultant distribution is given in Fig. 5.8b and indicates that

the local solution correlates well overall with the global solution shown in Fig. 5.3.

The distribution of the longitudinal stress resultant N, at the panel midlength

norma_zed by the nominal stress resultant obtained using the circular local model

is shown in Fig. 5.9a as a function of distance from the cutout normalized by the

cutout radius. These results indicate that the global/local analysis based on the

coarse global solution and the circular local model accurately predicts the stress

concentration factor at the cutout. A stress concentration factor of 2.75 is obtained

which is within 1.5% of the "refined" global model (G3) solution and 3.2% of the

theoretical solution. At the global/local interface boundary, the results from the

circular local model differ slightly from the results obtained from the refined global

model analysis. This difference is attributed to interaction between the "coarse"

global model, the interpolation region, and the location of the global/local interface

boundary. A contour plot of the longitudinal stress resultant distribution is given
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in Fig. 5.9b and indicates the overall correlation with the distributions obtained

using the global models.

The interaction between the global model, the interpolation region, and the

location of the global/local interface boundary is assessed below. This assessment

involves refining the global model in the transition square, varying the radius of

the interpolation region Rz and varying the radius of the local model RL. Using an

interpolation region defined as Rr = 14r0 (72 points from the global model), several

local models are considered in which RL is increased from twice the cutout radius

to five times the cutout radius. The results in Fig. 5.10a are based on using the

coarse global model (G1) for the global solution. These results indicate that the

local solution deteriorates as the global/local interface boundary is moved closer to

the cutout. The results in Fig. 5.10b are based on a slightly more refined global

model(G2) for the global solution. This global model has two additional rings of

elements in the transition square. Comparing the results in Figs. 5.10a and 5.10b

reveals the interaction between the global model and the location of the interface

boundary. To obtain an accurate local solution for the case when the global/local

interface boundary is located within a region with a high stress gradient requires

that sufficient data from the global model be available in the area to provide accurate

"boundary conditions" for the local model. These results indicate that by adding

just two rings of elements near the cutout (Model G2), the extraction of the local

model boundary conditions from the spline interpolation is improved such that the

global/local interface boundary may be located very near the cutout.

The influence of the radius of the interpolation region on the local solution is

determined to be minimal provided the global model discretization is adequate. For

the cases considered, identical local solutions are obtained using an interpolation

37



region larger than the local model or an interpolation region which coincideswith

the local model.

For the isotropic panel with a central cutout, the critical region is known. It

may be desirableto modelonly a portion (e.g., part of annular plate or sector)of the

structural regionaround the cutout. Three sectormodelswereconsideredincluding

a 4-45 ° sector, a -t-67.5 ° sector, and a 4-90 ° sector, each with its center at 90 ° from

the loading direction. The interpolation is performed from the "coarse" global model

solution. The sector local analyses introduce several additional factors not evident

in the previous local analyses. The longitudinal stress resultant N, distributions at

the panel midlength for the sector local models differ slightly at the cutout edge from

the distribution obtained for the circular local model. The N, distribution around

the circumference of the cutout reveals an inaccurate distribution at the straight

edges of the sectors. The error in the N, distribution along the sector straight

edges may be attributed to their proximity to the gradient of the longitudinal stress

resultant. The straight edges of tile smaller +45 ° sector are near the N, stress

resultant gradient, while the straight edges of the 4-90 ° sector are in a region in

which a secondary gradient associated with the transverse inplane stress resultant,

N_ (see Figs. 5.3 and 5.4), may affect the accuracy of the interpolated boundary

conditions. Applying boundary conditions at the cutout edge may also be, in effect,

over constraining the local structural model. These sector analyses reinforce the

importance of the local model boundary location.

The influence of the global model discretization on tile accuracy of the solu-

tion obtained by the _90 ° sector local model was assessed. The interpolation was

performed from successively more refined global models. As the global model re-

finement was increased, a more accurate N, distribution was obtained. The results

from the sector analyses reduce the feasibility of modeling a portion of the cutout
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in this manner. The global modelingrequirementsmust be increasedsubstantially

to maintain the samelevel of accuracyfor the sector local model analysesasfor the

circular local model analysis.

5.2.3 Computational Requirements

A summary of the computational requirements for the global and local anal-

yses of the isotropic panel with the circular cutout is given in Table 5.2. The

computational cost in central processing unit (CPU) seconds of the local analyses

is approximately 74% of the CPU time of the refined global analysis. The CSM

Testbed data libraries for the local analyses are 41% smaller than the data library

for the refined global analysis. The local models have 60O/o and 16% of the total

number of degrees of freedom required for the refined model (G3) and converged

global model, respectively.

5.2.4 Usage Guidelines

Usage guidelines derived from the global/local analysis of the isotropic panel

with a circular cutout are as follows. An "adequate" global analysis is required to

ensure a sumcient number of accurate data points to provide accurate "boundary

conditions" for the local model. When the global/local interface boundary, Rz

is within the high stress gradient (i.e., within a distance of two times the cutout

radius from the cutout edge), the importance of an "adequate" global analysis in

the high gradient region is increased. The interpolation region should coincide with

or be larger than the local model. To satisfy the compatibility requirements at the

global/local interface boundary, the local model boundary RL should be defined

sufficiently far from the cutout (i.e., a distance of approximately six times the

radius from the cutout).
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5.3 Blade-Stiffened Panel Results

Discontinuities and eccentricities are common in aircraft structures. For exam-

ple, the lower surface of the Bell-Boeing V-22 tilt-rotor wing structure has numer-

ous cutouts and discontinuous stiffeners (see Fig. 5.11). Predicting the structural

response of such structures in the presence of discontinuities, eccentricities, and

damage is particularly difficult when the component is built from graphite-epoxy

materials or is loaded into the nonlinear range. In addition, potential damage of

otherwise perfect structures is often an important design consideration. Recent in-

terest in applying graphite-epoxy materials to aircraft primary structures has led

to several studies of postbuckling behavior and failure characteristics of graphite-

epoxy components (see ref. [33]). One goal of these studies has been the accurate

prediction of the global response of the composite structural component in the post-

buckling range. In one study of composite stiffened panels, a blade-stiffened panel

was tested (see ref. [34]). A composite blade-stiffened panel was proof-tested and

used as a "control specimen". The panel was subsequently used in a study on dis-

continuities in composite blade-stiffened panels. The global structural response of

these composite blade-stiffened panels presented in reference [35] correlate well with

the earlier experiment data. The composite blade-stiffened panel with a discontin-

uous stiffener shown in Fig. 5.12 is representative of a typical aircraft structural

component and will be used to demonstrate and assess the global/local methodol-

ogy. This problem was selected because it has characteristics which often require a

global/local analysis. These characteristics include a discontinuity, eccentric load-

ing, large displacements, large stress gradients, high inplane loading, and a brittle

material system. This problem represents a generic class of laminated compos-

ite structures with discontinuities for which the interlaminar stress state becomes

important. The local and global finite element modeling and analysis needed to
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predict accurately the detailed stress state of flat blade-stiffened graphite-epoxy

panels loaded in axial compression is described in this section.

The overall panel length/_ is 30 in., the overall width W is 11.5 in., the stiffener

spacing b is 4.5 in., the stiffener height hs is 1.4 in., and the cutout radius r0 is

1.0 in. The three blade-shaped stiffeners-are identical The loading is uniform axial

compression. The loaded ends of the panel are clamped and the sides are free. The

material system for the panel is T300/5208 graphite-epoxy unidirectional tapes with

a nominal ply thickness of 0.0055 in. Typical lamina properties for this graphite-

epoxy system are 19,000 ksi for the longitudinal Young's modulus, 1,890 ksi for the

transverse Young's modulus, 930 ksi for the shear modulus, and 0.38 for the major

Poisson's ratio. The blade-stiffeners are 24-ply laminates ([4-45/0_0/T45]) and the

panel skin is a 25-ply laminate ([+45/02/=F45/03/+45/03/T45/O3/:I=45/O_/::F45]).

End-shortening results are shown in Fig. 5.13 for the "control specimen" and

for the configuration with a discontinuous stiffener. These results indicate that the

presence of the discontinuity markedly changes the structural response of the panel.

The structural response of the "control specimen" is typical of stiffened panels. Two

equilibrium configurations are exhibited; namely, the prebuckling configuration and

the postbuckling configuration. The structural response of the configuration with

a discontinuous stiffener is nonlinear from the onset of loading due to the eccentric

loading condition and the cutout. The blade-stiffened panel with a discontinuous

stiffener was tested to failure. Local failures occurred prior to overall panel failure

as is evident from the end-shortening results shown in Fig. 5.13.

5.3.1 Global Analysis

A global linear stress analysis of the composite blade-stiffened panel with a

discontinuous stiffener was performed for an applied load corresponding to P/EA

of 0.0008 (i.e., an applied compressive load P of 19,280 pounds normalized by the
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extensionalstiffnessEA). At this load level, the structural responseof the panel is

essentially linear. Four-node quadrilateral elements(ES5/E410) were usedin tile

linear analysis. Out-of-plane deflectionsarepresent,however,due to the eccentric

loading condition causedby the discontinuousstiffener. Severalglobalfinite element

modelsare consideredasindicated in Table 5.3 to obtain a convergedsolution for

comparison purposessince the theoretical solution is not available. The value of

the longitudinal stressresultant at the edgeof the cutout changed by less than 2%

between Models G2 and G4. Therefore, Model G1 will be referred to as the "coarse"

global model (see Fig. 5.1g), Model G2 will be referred to as the "refined" global

model, and Model Gg will be referred to as the "converged" global model.

The distribution of the longitudinal stress resultant N_ normalized by the ap-

plied running load (N_)_,, 9 (i.e., applied load divided by the panel width) as a

function of the lateral distance from the center of the panel normalized by the ra-

dius of the cutout is shown in Fig. 5.15 for both the "coarse" ((3,1) and the "refined"

(G2) global models. These results are sin_ilar to those obtained for the isotropic

panel with a cutout. The maximum longitudinal stress resultants (N_)m_ nor-

malized by the average running load (N_)a_9 are given in Table 5.3. The results

obtained using the coarse global model adequately predicts the distribution away

from the discontinuity but underestimates (by 24%) the stress concentration at the

edge of the discontinuity.

Oblique views of the deformed shape with exaggerated deflections are shown

in Figs. 5.16 and 5.17 for the coarse global model with contour plots of the inplane

stress resultants N_ and Ny, respectively. The distribution indicates that the model

provides good overall structural response characteristics. The N_ distributions re-

veal several features of tile global structural behavior of this panel. First, away

from the discontinuity, the N, distribution in the panel skin is nearly uniform and

42



lessthan the value of the N_. load in the outer two blade-stiffeners. Second, load

is diffused from the center discontinuous stiffener into the panel skin rapidly such

that the center stiffener has essentially no N_ load at the edge of the cutout. Third,

the N_ load in the outer stiffeners increases towards the center of the panel and is

concentrated in the blade free edges (i.e., away from the stiffener attachment line

at the panel skin). Fourth, the N_ load in the panel skin near the center of the

panel is much greater than the Nz load in other portions of the panel skin.

The distribution of the strain energy for Model G1 is shown in Fig. 5.18. The

change in the strain energy per unit area within the transition square again indicates

that a high stress gradient exists near the discontinuity and rapidly decays away

from the discontinuity. These results are consistent with the structural analyst's

intuition, and the local models described subsequently will further interrogate the

region near the discontinuity. For this load level, the skin-stiffener interface region

has not yet become heavily loaded. FIowever, this region will also be studied further

to demonstrate the flexibility of the global/local stress analysis procedure presented

herein.

5.3.2 Local Analyses

A global/local analysis capability provides an alternative approach to global

mesh refinement and a complete solution using a more refined mesh. For this

example, one "critical" region is easily identified by even a casual examination of the

stress resultant distributions given in Pig. 5.16. A second critical region that may

require further study is indicated by the slight gradient near the intersection of the

blade-stiffener and the panel skin as shown in Fig. 5.15. Skin-stiffener separation

has been identified as a dominant failure mode for stiffened composite panels (e.g.,

see refs. [33-:57]). Tile global model, the interpolation regions and tile local models

considered are shown in Fig. 5.19. The global model corresponds to the "coarse"
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global model (G1) and the shaded regions correspond to the interpolation regions

which are used to generate the spline matrix and to extract boundary conditions

for the local models. As indicated in Fig. 5.19, two different critical regions are

considered. One region is near the discontinuity and again square and circular local

models are used in the local analysis. The boundary of the square local model

coincides with the boundary of the transition square in the global model. The

circular model is inscribed in the transition square. That is, the outer radius of the

circular model is equal to half the length of a side of the transition square. The

other region is near the skin-stiffener interface region at the panel midlength for

one of the outer stiffeners. The global/local interpolation for all local analyses is

performed from the data obtained from the "coarse" global model analysis. Two

interpolation regions were used for each of the local analyses. The first interpolation

region, specified in the plane of the panel skin, is used to obtain the boundary

conditions on the global/local interface boundary of the panel skin. The second

interpolation region, specified in the plane of the stiffener, is used to obtain the

boundary conditions on the global/local interface boundary of the stiffener. The

boundary conditions for the panel skin and the stiffener were interpolated separately.

Compatibility of the displacements and rotations at the skin-stiffener intersection

on the global/local boundaries was enforced by imposing the boundary conditions

obtained for the pane] skin.

The local models (Models LS1 and LC1 in Table 5.3) of the first critical region

near the discontinuity have the same number of 4-node quadrilateral shell elements

(576), number of nodes (612) and number of degrees of freedom (3456). Both local

models have only 56% of tile elements used in the refined global analysis. The

results for the two local models are nearly the same, and therefore only the results

of the circular local model (LC1) are shown in Table 5.3. The distribution of the

longitudinal stress resultant N_ at the panel midlength normalized by the average
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running load (N,)a,,g for Model LC1 is shown in Fig. 5.20a as a function of lateral

distance from the cutout normalized by the cutout radius. These results indicate

that the global/local analysis based on the coarse global solution and using either

the square or circular local model accurately predicts the stress concentration factor

at the cutout as well as the distribution at the global/local interface boundary. A

contour plot of the longitudinal stress resultant distribution is given in Fig. 5.20b.

These results indicate that the local solution correlates well with the global solution

shown in Fig. 5.16.

The second critical region near the intersection of the outer blade-stiffener and

the panel skin at the midlength is studied further. Three different local finite el-

ement models of this critical region are considered as indicated in Table 5.3. The

first, Model LR1, has the same number of nodes (25) and number of elements (16)

within the critical region as the coarse global model (G1). The second, Model LR2,

has the same number of nodes (45) and number of elements (32) within the critical

region as the refined global model (G2). The third and most refined model, Model

LR3, has 117 nodes, 96 elements and 462 degrees of freedom. The longitudinal stress

resultant N, distributions obtained for the local models (LR1 and LR2) correlate

well with the N, distributions for the coarse and refined global models (Models G1

and G2). However, these models are not sufficiently refined in the skin-stiffener

interface region to accurately predict the gradient at the skin-stiffener intersection.

The distribution of the longitudinal stress resultant N, normalized by the applied

running load as a function of the lateral distance from the center of the panel nor-

malized by the radius of the cutout is shown in Fig. 5.21. These results indicate

that the global/local analysis using the local model Model LR3 predicts a higher

gradient at 1 = -4.5 in the skin-stiffener interface region than the other global,'o

and local analyses. A third global model Model G3 is used to investigate the local

structural behavior predicted by Model LR3. The global analysis performed with
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Model G3 predicts the samelocal behavior as the analysisperformed with Model

LR3 asindicated in Fig. 5.21. Severalfactors should be borne in mind. First, the

local analysis revealedlocal behavior at the skin-stiffener interface region that was

not predicted by either of the global models. Second,the global modeling require-

ment for examining the skin-stiffener interface region is substantial. Becausethe

global modelsweregeneratedto predict the stressdistribution around the disconti-

nuity, additional radial "spokes" in the transition squareare required to refine the

panel skin in the skin-stiffener interface region in the longitudinal direction. Third,

the global/local analysis capability provides the analyst with the added modeling

flexibility to obtain an accurate detailed response at multiple critical regions (i. e., at

the discontinuity and at the skin-stiffener interface region) with minimal modeling

and computational effort.

5.3.3 Computational Requirements

A summary of the computational requirements for the global and local analyses

of the graphite-epoxy blade-stiffened panel with the discontinuous stiffener is given

in Table 5.4. The computational cost in CPU seconds of the local analyses around

the discontinuity is approximately 57% of the CPU time of the refined global anal-

ysis. The CSM Testbed data libraries for the local analyses are approximately half

of the size of the data library for the refined global analysis. The local models have

55% and 16% of the total number of degrees of freedom required for the refined

model (G2) and converged global model (G4), respectively. The CPU time for the

refined local analysis (LR3) of the skin-stiffener interface region is 24% of the CPU

time required for the global analysis with Model G3. The size of the data library

for the local analysis is 5% of the size of the data library required for the analysis

with Model G3.
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5.3.4 Usage Guidelines

Usage guidelines derived from the global/local analysis of the blade-stiffened

panel with a discontinuous stiffener are as follows. An "adequate" global analysis

is required to ensure a sumcient number of accurate data points to provide accu-

rate "boundary conditions" for the local model. When the global/local interface

boundary, Rt, is within the high stress gradient (i.e., within a distance of two times

the cutout radius from the cutout edge), the importance of an "adequate" global

analysis in the high gradient region is increased. The interpolation region should

coincide with or be larger than the local model. To satisfy the compatibility require-

ments at the global/local interface boundary, the local model boundary R t, should

be defined sufficiently far from the cutout (i.e., a distance of approximately six

times the radius from the cutout). For the blade-stiffened panel, two interpolation

regions should be specified, one for the interpolation of the boundary conditions on

the boundary of the panel skin and a second for the interpolation of the boundary

conditions on the outer edges of the stiffeners.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A global/local analysis methodology for obtaining the detailed stress state of

structural components is presented. The methodology presented is not restricted to

having a priori knowledge of the location of the regions requiring a detailed stress

analysis. The effectiveness of the global/local analysis capability is demonstrated

by obtaining the detailed stress states of an isotropic panel with a cutout and a

blade-stiffened graphite-epoxy panel with a discontinuous stiffener.

Although the representative global finite element models represent the global

behavior of the structures, substantially more refined finite element meshes near the

cutouts are required to obtain accurate detailed stress distributions. Embedding a

local refined model in the complete structural model increases the computational

requirements. The computational effort for the independent local analyses is less

than the computational effort for the global analyses with the embedded local re-

finement.

The global/local analysis capability provides the modeling flexibility required

to address detailed local models as their need arises. This modeling flexibility was

demonstrated by the local analysis of the skin-stlffener interface regions of the

blade-stiffened panel with a discontinuous stiffener. This local analysis revealed

local behavior that was not predicted by the global analysis.

The definition of the global/local interface boundary affects the accuracy of the

local detailed stress state. The strain energy per unit area has been selected as a

48



means for identifying a critical region and the location of the associated global/local

interface boundary. The change in strain energy from element to element indicates

regions with high stress gradients (i.e., critical regions). A global/local interface

boundary is defined outside of a region with large changes in strain energy.

The global/local analysis capability presented provides a general-purpose anal-

ysis tool for use by the aerospace structural analysis community by providing an

efficient strategy for accurately predicting local detailed stress states that occur in

structures discretized with relatively coarse finite element models. The coarse model

represents the global structural behavior and approximates the local stress state.

Independent, locally refined finite element models are used to accurately predict

the detailed stress state in the regions of interest based on the solution predicted

by the coarse global analysis.

6.2 Recommendations

Future studies related to the present work are recommended. The present work

provides initial capabilities for the global/local linear stress analysis of structural

components and subcomponents. Additional recommended studies include:

1. Extending the global/local interpolation procedure to a three-dimensional

domain;

2. Automating the procedure for selecting tile global/local interface bound-

ary;

3. Developing a multiple localregion analysisstrategy which exploitsconcur-

rent processing;

4. Extending the global/local analysis strategy to geometrically nonlinear

problems; and,

5. Assessing the use of hierarchical plate theories for the local stress analyses.
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APPENDIX A

Derivation of Harder-Desmarais Spllne Interpolation Function

The derivation of the spline interpolation function used in this study is given

in this appendix and also in reference [24]. The solution to Eq. (3.1) in polar

coordinates is given in reference [28] as

w(r) = A + Br 2 + Clnr + Dr21nr 2 (A.1)

The constant, C, in the term Clnr, must be equal to zero to maintain a bounded

solution at r = 0.

The first step is to determine the deflection due to a point load at the origin.

From equilibrium, the point load at the origin may be expressed as

p = 2rrQ,. (A.2)

where Q,, = D_(V2w). Differentiating Eq. (A.1) and substituting into Eq. (A.2)

yields/) = le-_ • Therefore, the deflection due to a point load at the origin is

w(r) = A + Br 2 + (-----P-_P)r21nr 2 (A.3)
167rD

The deflection of the entire spline will be taken as the sum of the solutions of Eq.

(A.3)
n

Pi 21 2
w(z,y) = _--_(Ai + Bir_ + 167r----_rimri) (A.4)

i=l

where r i2 = (z -- xi) 2 + (y - yi) 2, n is the total number of nodes in the interpolation

region which contains the local model.

The surface spline should be flat a long distance from the applied loads. Let

z = r cos 0, y = r sin 0, and expand Eq. (A.4) for large r.
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r_ _7, n

w(r,0) = r21nr 2 E pi r216_----_+ _ B,- 2rlnT2_(_,¢osO+_,sinO) p'167rD
i=1 i=1 i=1

) P_+2rE(xic°sO+yisinO)( 16_'DPi Bi)+lnr2E(x_ +Y_ 16_'D + ... (A.5)
i=1 i=1

The unbounded terms of the order r21nr 2, r 2, and rlnr 2 can be eliminated from Eq.

(A.5) by setting

EPi=0 (A.6)

E xiPi = 0 (A.7)

_ y_P_= O (A.8)

and

E Bi = 0 (A.9)

and substituting into Eq. (A.4) yieldsExpanding r i

n n _ n

w(z,y) = _Ai +(x 2 +y2)2Bi + 2Bi(x_ +y_)-2x2Bixi

/=1 i=1 i=1 i=1

Recall that

and letting

n

-2y E Biyi + E Pi rilnr_161rD
i=l /=1

Bi =0
i=1

n

ao = _[A, + Bi(x_ + Y_)I
i=1

al = -2 E Bixi
i=1

-- TIg

as = -2 E BiYi
i=l

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

54



and

Eq. (A.4) reduces to

W(T,,y) = a 0 4- al_ -_- a2y 4- _ Fir_lnr_

i=l

where ao, al, a2 and Fi are undetermined coefficients.

(A.15)

(A.16)
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APPENDIX B

Runstream for the Global Analysis of the Isotropic Panel

The CSM Testbed is used for the global analysis of an isotropic panel with

a circular cutout. The Testbed command language (see ref. [25]) is used in the

analysis. A driver procedure is used to perform the global analysis. The additional

lower level procedures are also listed for completeness. The procedure flow is given

before the call to the driver procedure and limited in-line documentation is given.

cd /scr/jbr
rm ISO_FOC.LO1
rm PANEL.PKC

time $CSM_EXE/testbed << *EOI*
*set echo=off

*set plib = 28
*OPEN I ISO_FOC.L01

*OPEN/NEW 28 PROCLIB.L28

*add '$GEN_UTIL/utilities.prc'

*add '/usr/ul/knight/csm/prc/utilities/stress.clp'

• Procedure Flow

GLOBAL -- Perform analysis

MESH_GLOBAL -- Create data for processor CSM1

MATDAT -- Create data for processor LAU

*CALL GLOBAL ( es_proc = ES5; es_name = E410; location = 'ALL'; --

precision = I; NNPE = 410; IOPT = i; NRINGS = 16; --
NSPOKES = 32; NELS = O; NELX = 8; NELE = 2; --

NELBS = 2; RAT = 0.; A = 2.; direction=l )

*PROCEDURE GLOBAL ( es_proc = ES1 ; es_name = EX47 ; --
es_pars = 0.0 ; direction = l;--

location = 'NODES'; precision = 2; --

NNPE = 4; IOPT = 7; NRINGS = 4; --
NSPOKES = 16; NELS = 2; NELX = 6; --

NELE = 2; NELBS = 2; RAT = O; A = 4 )

*call ES ( function = 'DEFINE ELEMENTS' ; es_proc = [es_proc]; --

es_name = [es_name] ; es_pars = [es_pars] )

*CALL MESH_GLOBAL ( NNPE = [nnpe]; IOPT = [iopt]; --

NKINGS = [nrings] ; NSPOKES = [nspokes] ; --
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NELS = [nels] ; NELX = [nelx] ; --

NELBS = [nelbs]; NELE = [nele]; --

RAT = [rat]; A = [A] )

[XQT CSM1

RESET LOAD=TENS

[xqt tab
online=O

*ADD '/scr/jbr/PANEL.PRC
*CALL PANEL_START

JLOC

*CALL PANEL_JLOC

MATC

1 1.0 0.3
CON 1

*CALL PANEL_BC

*CALL MATDAT

[xqt lau

[xqt ELD
online=O

*CALL PANEL_CONN

STOP

*CALL ES ( function = 'DEFINE FREEDOMS')

[xqt aus

sysvec : APPL MOTI
*CALL PANEL_AD

STOP

[xqt E
[xqt RSEQ

reset maxcon=41 ,method=l

[xqt TOPO

RESET MAXSUB = 40000,1ram = 8196

Initialize Element Computational Data

*call ES ( function = 'INITIALIZE' )

• Form Element Material Stiffness Matrices

*call ES ( function = 'FORM STIFFNESS/MATL' )

Assemble Material Stiffness Matrix

[xqt K

Factor Stiffness Matrix

[xqt INV
online = 2

reset Ira = 7168

57



reset dzero=l.E-lO

reset spdp = [precision]

[xqt AUS

Solve for Displacements

[XQT SSOL

RESET SET=l, CON=I

Form Element Stresses

*call STRESS ( STRESS = <true> ; LOCATION = [location]; --

DIRECTION = [direction]; SMOOTH = <true> )

*call STRESS ( STRESS = <true> ; LOCATION = 'NODES'; --

DIRECTION = 0 )

*end

*procedure MESH_LOBAL ( NNPE = 9; IOPT = 7; NRINGS = 4; --

NSPOKES = 16; NELS = O; NELX = 3; --

NELBS = 2; NELE = I; RAT = O; A = 4. )

[xqt aus

• build table of integer user data

TABLE(NI=33,NJ=I,itype=O): CSMP FOCS I 1

3=1: [nnpe] [iopt] [nrings] [nspokes] >
001 111>

000 000>

101 111>

000 000>

O01 111>

011 111>

111 111>
101 111>

011 111>
111 111>

Edge x=O.O (Edge 1)

Edge y=A+2*(nele+nelbs) (Edge 2)

Edge x=AI (Edge 3)

Edge y=O.O (Edge 4)

Corner at (0.,0.)

Corner at (O.,[A+2*(nele+nelbs)])

Corner at (Al,[A+2*(nele+nelbs)])

Corner at (Al,O.)

Stiffeners at x=O.O

Stiffeners at x=Al

iwall jwall iref jref nelx nele nelbs nels ifill

1 1 1 1 [nelx] [nele] [nelbs] [nels] 0

• build table of floating point user data

TABLE(NI=IO.NJ=I): CSMP FOCS 1

a dhole xc yc zc rat al be bs hs

3=1: [A] .5 <[A]/2.> 0.0 0.0 [rat]

*END

20.0 1. 4. 1.4

*procedure MATDAT
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[xqt aus

Ell NUI2 E22 GI2 GI3 G23 ALPHA1 ALPHA2 WTDEN

TABLE(NI=I6,N3=I): OMB DATA I I

I=1,2,3,4,5,6,7,8,9

*def g = 3.84615e+6

3=1:10.0E+6 .30 I0.0E+6 <g> <g> <g> 0.0 0.0 .I

TABLE (NI=3,NJ=l,itype=O): LAM OMB 1 I
J=l : 1 .I 0.00

*end

[xqt exit
*EOI*
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APPENDIX C

Runstream for the Global Analysis of the Isotropic Panel

A driver command file is used to perform the local analysis. The command file calls

several CLAMP procedures during the analysis. Additional lower level procedures

are listed for completeness. The procedure flow is given before the call to each

procedure in the driver command file and limited in-line documentation is given.

cd /scr/jbr

rmLOC_CSMI.L01PANEL.PRC

time $CSM_EXE/testbed << *EOI_MAIN*

*set echo=off

*set plib = 28

*OPEN/new I LOC_CSMI.LOI

*OPEN/NEW 28 PROCLIB.L28

*open/old 2 glob216.101

*add '$GEN_UTIL/utilities.prc'

*add '/usr/ul/knight/csm/prc/utilities/utilities.prc'

*add '$ISO_PANEL/local/local.prc'

*def/a es_proc = 'ES5'

*def/a es_name = _E4iO'

*def/i nnpe = 410

*def/i iopt = I

*def/i nrings = 16

*def/i nspokes = 32

number of rings of elements

. number of spokes of nodes

Procedure Flow

FORM_SPLN_MATR -- Forms and inverts spline coefficient matrix and

reads interpolation region data

*CALL FORM_SPLN_MATR ( nels = 0 )

Procedure Flow

FORM_MOD_CSMI -- Defines global/local interface boundary and

uses processor CSMI to generate the model

MESH_LOCAL

BOUN_COND

FORM_PANEL_BOUN

FORM_STIFF_BOUN

*CALL FORM_MOD_CSM1 ( es_proc ffi<es_proc>; es_name = <es_name>; --
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nrings = <nrings>; nspokes = <nspokes>; --

nels = O; --

NELX = O; NELE = O; NELBS = O; --

ndof = 6 )

• Procedure Flow

INTERP_FIELD -- Generates interpolated local field for each degree
of freedom

*CALL INTERP_FIELD ( nels = 0 )

• Procedure Flow

SOLVE -- Applies ''boundary conditions'' and performs local

analysis
FORM_APPL_MOTI

*CALL SOLVE ( direction = I; location = 'ALL'; num_strs = 3; --

nels = O; --

ndof = 6; nrings = <nrings>; nspokes = <nspokes> )

[XQT EXIT
.EOI_MAIN.

• procedure FORM_SPLN_MATR - forms the spline interpolation matrices
for the skin and the stiffeners if

• applicable

*PROCEDURE FORM_SPLN_MATR ( cornerl = 9.,4.,0.; --

corner2 = 11.,6.,0.; --
nels = O; ldi = 2; hs = 1.4; --

pdeg = 3; be = 1.25 )

-

*def/i nels == [nels]

*def/e c111:3] = [corner1]

*def/e c211:31 = [corner2]

*OPEN 2 '/scr/jbr/glob216.101'

*COPY i = [Idi],2:15

*COPY 1,PROP.*.* = [idi],PROP.*.*

*COPY 1,MATC.*.* = [Idi],MATC.*._

*COPY I,STAT.DISP.* = [ldi],STAT.DISP.*

*CLOSE [Idi]

[xqt SPLN

RESET DEGREE=[pdeg]

SURF 1 XLOC=I, YLOC=2, SYM=O

INPUT

BOUN I

<c1[1]>,<c112]>,<c113]> <c211]>,<c212]>,<c213]>
STOP

• make a separate run through spln for stiffeners

*remark Generate coefficient matrices
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*if <[nels] /ne O> /then

*open/new 27 PROCLIB.L27

*set plib=27

*add '$HOME/focus/STIFF.PRC'

. get global model parameters

[xqt aus

macro 1CSMP FOCS 1 1 local 3 3 i 'ngr

macro 1CSMP FOCS 1 1 local 4 4 1 'ngs

macro i CSMP FOCS 1 1 local 32 32 1 'nEst

stop

*OPEN/new 3 bsp_stiff.lO3

[XQT SPLN

RESET SLIB = 3

RESET DEGREE=2

RESET ZDATA=I

SURF 1 XLOC=I, YLOC=2, SYM=O

INPUT

BOUN i

<ci[I]>,5.,0. <c2[l]>,5.,[hs]

DS 1STIF INPU 1 1

STOP

*set plib=28
*endif

*end

*procedure MESH_LOCAL ( NNPE = 4; IOPT = 7; NRINGS = 4; --

NELS = 2; NELX = 6; NELE = 2; NELBS = 2; --

PNSECT=I; SNSECT=I; NSPOKES = 16; --

A = 2.; LENGTH=20.; DHOLE=0.5; BE=I.; --
BS=4. )

*show ar E

ixqt aus

. build table of integer user data

TABLE(NI=33,NJ=1,itype=O): CSMP FOCS 1 1

J=l: [nnpe]
001 III>

000 000>

101 111>

000 000>

001 III>

011 111>

111 111>

101 111>

011 111>

111 111>

[iopt] [nrings] [nspokes] >

Edge x=O.O

Edge y=A+2*(nele+nelbs)

Edge x=Al

Edge y=O.O

Corner at (0.,0.)

(Edge 1)

(Edge 2)

(Edge 3)

(Edge 4)

Corner at (O.,[A+2*(nele+nelbs)])

Corner at (Al,[A+2*(nele+nelbs)])

Corner at (AI,O.)

Stiffeners at x=O.O

Stiffeners at x=Al

iwall jwall iref jref nelx nele nelbs

[pnsect] [snsect] 1 1 [nelx] [nele] [nelbs]

nels ifill

[nels] 0
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build table of floating point user data

TABLE(NI=IO,NJ=I): CSMP FOCS I 2

a dhole xc yc zc rat al be bs hs

J=l: [A] [dhole] <[A]/2> 0.0 0.0 O. [length] [BE] [BS] 1.4
*END

*procedure STIFF_NODE ( nels = O; nirngs = 4; nspokes = 16; --

ds_name = 'STIF' )

*sho arg

*def/i icnt= 0

*def/i nelsx == <2*[nirngs]>
*def/i nnodsx == < <nelsx> + 2 >

*def/i nhole == < <[nirngs]+l>*[nspokes] >

*do Sis = 1,2

*do Sis = i,[nels]

*def/i icnt= <<icnt> + i >

*def/i nstiffl[<icnt>]==< <nhole>+<<$is>-l>*<<nnodsx>+[nirngs]> --

+ <<$js>-1>*<[nirngs]+l> + I >
*enddo

*enddo

*def/i nnstifl == <icnt>

[xqt AUS

TABLE (ni=l,nj=<nnstif1>,ITYPE=O): [ds_name] NODE i I

*do %is = 1,<nnstifl>

J=<$is>: <nstiffl[<$is>]>

*enddo

stop
*end

procedure BOUN_COND added to facilitate boundary condition

• definition with procedure GEN_SHELL the procedure may

still be used with original model definition procedures.

*procedure BOUN_COND ( axial_nodes = O; --

circum_nodes = O; --

es_nodes = O; --

drilling_dof = ' '-, --

ndof = 6 )

*if <[es_nodes] /ne O> /then

*def/£ nnod = < [axial_nodes]*<[circum_nodes]-i> >

*def/i nnint = <[circum_nodes]-l>

[xqt AUS

TABLE (NI=l,NJ=<[circum_nodes]-l>,ITYPE=O): BOUN NODE I I

*do $i=l,<[circum_nodes]-l>

J = <$i>: < <$i>*[axial_nodes] >

*enddo

*else
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•gal2mac /name=nnod /maxn=l 1, JDF1. BTAB. I. 8, DATA. 1

•find record_key 1,BOUN.NODE. I. 1,DATA• 1 /dim=nbn
•def/i nnint = <nbn>

,endif

[XOT AUS
MACRO i BOUN NODE I I 'bnod

[XQT TAB

online=O

CON 1

•if < [ndof] /eq 5 > /then

NONZERO 1,2,3,4,5

,else

NONZERO 1,2,3,4,5,6
*endif

*do $i = I, <nnint>

<bnod [<$i>] >

,enddo

*if <<nels> /ne O> /then

•do $i = I, <nnstifl>

<nstiffl[<$i>] >

,enddo

*endif

,end

•PROCEDURE FORM_MOD_CSM1 ( es_proc = ESI ; es_name = EX47 ; --

nrings = 10; nspokes = 64; nels = O; --

nelx = 6; nele = 2; nelbs =2; --

pnsect=l; snsect=l; a = 2.; --

length=20.; dhole=0.5; be=l.; bs=4.; --
ndof = 6 )

• call ES ( function = 'DEFINE ELEMENTS' ; es_proc = [es_proc]; --

es_name = [es_name] ; es_pars = 0.0 )

*if <ifeqs(<Es_name>;E410)> /then
*def/i csmnen == 410

*def/i csmopt == 1

,elseif <ifeqs(<Es_name>;E43)> /then

*def/i csmnen == 4

*def/i csmopt == 0
*else

,def/i csmnen == <Es_nen>

*def/i csmopt == <Es_opt>
*endif

*def/i ndf == [ndof]

iXQT AUS
TABLE(NI=I,NJ=<nnint>,ITYPE=O): BOUN NODE 1 1
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*do $i = I, <nspok>

J = <$i>: <<<nrings>-1>_<nspok>+<$i>>
*enddo

stop
*if <[nels] /ne O> /then

•call STIFF_NODE ( nels = <nsnody>; nirngs = <nrng>; --

nspokes = <nspok>; ds_name = 'STIF' )
*endif

• CALL MESH_LOCAL ( NNPE = <csmnen>; IOPT - <csmopt>; --

NRINGS = <nrng>; NSPOKES = <nspok>; --
NELS = [nels] ; NELX = [nelx] ; --

pnsect=[pnsect]; snsect=[snsect]; a = [a]; --

dhole= [dhole] ; length= [length] ; --

be= [be]; bs=[bs]; --

NELE = [nele]; NELBS = [nelbs] )

*if <[nels] /eq O> /then

[X0T CSMX
*endif

[XQT TAB

•ADD PANEL.PRC

*if <<ndf> /eq-6> /then
START <<nnod>+<nsnod>>

.else

.CALL PANEL_START

*endif

online=O

_def dtheta = < 360./<nspok> >

*def tend = < 360. - <dtheta> >

ALTREF

4 10. 20. 30. i5.0 5.75

JLOC

,CALL PANEL_JLOC

•call BOUN_COND

iXQT ELD

online=O

•CALL PANEL_CONN

stop

•call FORM_PANEL_BOUN ( nspok = <nspok>; nrng = <nnrng> )

•undefine/global ri,ro,tend,jl,j2,in,dtheta,n2,n3,nrml

• ,OPEN 27 PROCLIB.L27

• set plib = 28
•if <[nels] /he O> /then

•CALL FORM_STIFF_BOUN
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*endif

*end

*procedure INTERP_FIELD ( ndof = 6 ; nels = 0 )

*do Sdof = 1,[ndof]

[XQT INTS

SURF= 1

SYM =0

XY = 1 BOUN XY 1 1

DATA= SYSVEC I STAT DISP 1 1 COL <$dof>

INTER=I REFI DISP 1 <$dof>

STOP

*enddo

execute ints a second time to interpolate up stiffeners

*if <[nels] /ne O> /then

*remark Interpolating stiffener displacements

*OPEN 3 bsp_stiff.103

*do Sdof = l,[ndof]

[XQT INTS

RESET SLIB = 3

RESET DEGREE = 2

SURF=I

SYM =0

XY = i STIF XY I 1

DATA= SYSVEC I STAT DISP I 1 COL <$dof>

INTER=I STIF DISP I <$dof>

STOP

*enddo

*endif

*end

*procedure FORM_PANEL_BOUN ( nspok = 16; nrn g = 5; snbase = O; --

dnbase = O; snskip = O; --

append = <false> )

*if <[append]> /then

*def/a table = 'TABLE,U'

*else

*def/a table = 'TABLE'

*endif

*find record_key I,BOUN.NODE.I.I,DATA.I /dim=nbn

[XQT AUS

*if <[snbase] /eq O> /then

*def/i sbase = < 3*<[nrng]-l>*[nspok]> >

*def/i sskip = I
*else

*def/i sbase = < 3*[snbase] >

*def/i sskip = < 3*[snskip] + 1>
*endif

DEFINE JLOC = JLOC BTAB 2 5

<table> (ni=2, nj=<nbn>): BOUN XY I I

TRANSFER(source=JLOC, sbase=<sbase>, sskip=<sskip>, --
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ilim=2, dbase = <2*[dnbase] >,jlim= [nspok])

stop
*end

*procedure FORM_STIFF_BOUN

*remark

*remark PROCESSING STIFFENER BOUNDARY LOCATIONS

*remark ================:

*FIND RECORD_KEY I STIF.NODE.I.I,DATA.I /DIM=NNSTF

[XQT AUS

MACRO I STIF NODE i I 'nstff

TABLE (NI=2,NJ=<nnstf>): STIF XY I I

*do $ij = i,<nnstf>

TRANSFER(source=JLOC,sbase=<3*<<nstff[<$ij>]>-l>>,--

dbase=<2*<<$ij>-l>>, sskip=i,ilim=l,jlim=2)
*enddo

stop
*end

*procedure FORM_APPL_MOTI ( nspok = 16; nrng = 5; nels = O; --

ndf = 6; ambase = O; --

amskip = 0; snbase = O; --

append = <false>; stiff_only=<false> )

*show arg ambase
*if <[ambase] /it O> /then

*return

*endif

*if <[append]> /then

*def/a table = 'TABLE,U*

*else

*def/a table = 'TABLE*

*endif

[XQT AUS

*if <[nels] /he O> /then

MACRO i STIF NODE 1 1 'nstff

*def/i sdskip = < <[ndf]-l> + [ndf]*<<nstff[2]>-<nstff[l]>-l> >
*endif

*do Sdof = l,[ndf]

DEFINE R<$dof> = REFI DISP I <$dof>

*if <[nels]> /he O> /then

DEFINE S<$dof> = STIF DISP 1 <$dof>

*endif

_enddo

*gal2mac /name=nnodes /maxn=l I, JDFI. BTAB. 1.8, DATA. I

<table> (ni=[ndf],nj=<nnodes>): APPL MOTI i I

,do Sdof = l,[ndf]

*if <[ambase] /eq O> /then

*def/i dbase=< [ndf] *<< [nrn E] -I>* [nspok] >+<$dof>-l>
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*def/i dskip = 5
*else

*def/i dbase=<[ndf]*[ambaseS+<$dof>-i>

_def/i dskip = < [ndf]_[amskip]+5 >
*endif

*if < [stiff_only] /eq <false> /then

TRANSFER (source=R<$dof>,dbase=<dbase>,dskip=<dskip>, --

jlim=[nspok], ilim=l, sbase = [snbase] )

*endif

transfer the interpolated displacements for stiffeners into
the APPL MOTI dataset

*if <[nels] /ne O> /then

*def/i sdbasel = < [ndf]*<<nstff[l]>-l> + <$dof>-I >

*def/i sdbase2 = < [ndf]*<<nstff[<l+[nels]>]>-1> + <$dof>-I >

*find record_key I,STIF.NODE.I.I,DATA.I /dim=nnstf

*do $ij = l,<nnstf>

*def/i sdbase = < [ndf]*<<nstff[<$ij>]>-l> + <$dof>-I >

TRANSFER(source=S<$dof>,sbase=<<$ij>-l>,dbase=<sdbase>, --

sskip=l,ilim=1,jlim=1)
*enddo

*endif

*enddo

stop
*end

*procedure SOLVE ( direction = I; location = 'CENTROIDS'; --

num_strs=8; stiffeners = <false>; --

nels = O; ndof = 6; nrings = 10; --

nspokes = 64; ambase = 0; amskip = 0 )

,sho arg

*def/i ES_PROJ = 2

*def/i ndf = [ndof]

_def/i nspok = [nspokes]

*if < <es_nen> leq 4 > /then

*def/i nrng = <[nrings]+l>

*def/i ngels == [nels]

*def/i ngrngs == 2
*else

*def/i nrng = <2*[nrings]+l>

*def/i ngels == <2*[nels]>

*def/i ngrngs == 4
*endif

*if <[stiffeners]> /then

*def/i ne = <nrng>
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*else

*def/i ne = 0

*endif

*def/i nnint = < <nspok> + 2*<he> >

iXOT DCU

TOC 1

*do $i = l,<ndf>

PRIM I REFI DISP I <$i>

_if < [nels] /ne 0 > /then

PRIM i STIF DISP 1 <$i>

*endif

*enddo

*call FORM_APPL_MOTI ( nspok = <nspok>; nrng = <nrng>; --

nels=[nels]; ndf = <ndf>; --

ambase = [ambase]; amskip = [amskip] )

iXqT RSEq

RESET MAXCON=41,METHOD=I

stop

Initialize Element Datasets

iXQT TOPO

RESET MAXSUB=40000, LRAM=8196

[XqT E

Initialize Element Computational Data

*call ES ( function = 'INITIALIZE' )

Form Element Material Stiffness Matrices

*call ES ( function = 'FORM STIFFNESS/MATL' )

Assemble Material Stiffness Matrix

[xqt K

Factor Stiffness Matrix

[xqt INV
online = 2

reset Ira = 7168

reset dzero=l.E-lO

reset spdp = <csm_precision>

[xqt AUS
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Solve _or Displacements

[XQT SSOL

RESET SET=l, CON=I

*end

Form Element Stresses

*call STRESS ( STRESS = <true> ; LOCATION = [location]; --

DIRECTION = [direction]; SMOOTH = <true> )

*call STRESS ( STRESS = <true> ; LOCATION = 'NODES'; --

DIRECTION = 0 )
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Table 5.1 Finite Element Models of Isotropic Panel

with Circular Cutout.

Model

Designation

Number of

Rings

of Nodes

Number of

Radial Spokes

of Elements

Total

Number of

Elements

Total

Number of

Nodes

G1 2 16 256 296

G2 4 16 288 328

G3 16 32 832 888

G4 _ 32 80 3168 3272

LS1 16 32 512 544

LC1 16 32 512 544

g_

2.06

2.23

2.72

2.81

2.76

2.75

* G4 is the converged model

Table 5.2 Summary of Computational Requirements.

Measures of ComputationM Effort

Model Total Number of Size of Data

Designation Degrees of Freedom CPU, seconds Library, Mbytes

G1 1644 64.0 5.2

G2 1836 69.7 6.0

G3 5156 183.4 22.2

G4 _ 19340 1167.2 160.0

LS1 3072 135.4 13.0

LC1 3072 121.6 12.6

G4 is the converged model
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Table 5.3 Finite Element Models of Blade-Stlffened Panel
with Discontinuous Stiffener.

Model

Designation

G!

G2

G3

G4 a

LS1

LC1

LR1

LR2

LR3

Number of

Rings

of Nodes

2

16

16

32

Number of

Radial Spokes

of Elements

16

32

32

8O

16 32

16 32

Total

Number of

Elements

376

1024

1408

3472

576

576

16

32

96

Total

Number of

Nodes

424

1088

1488

3584

612

612

25

45

117

2.22

2.88

2.88

2.94

2.88

2.92

G4 is the converged model

Table 5.4 Summary of Computational Requirements.

Model

Designation

G1

G2

G3

G4 _

LS 1

LC1

LR1

LR2

LR3

Measures of Computational Effort

Total Number of

Degrees of Freedom

2316

6252

8460

21084

CPU, seconds

99.7

255.3

329.6

1006.0

187.7

188.7

3456

3456

54

126

462

58.0

62.0

78.7

Size of Data

Library, Mbytes

8.7

28.9

38.5

140.6

13.6

13.1

0.5

0.8

1.8

G4 is the converged model
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Fig. 1.1 Global/Local Analysis Levels.
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Fig. 1.2 Mesh transitioning using triangular elements.
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Fig. 1.3 Mesh transitioning using variable-order elements.
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Fig. 2.1 Terminology of the global/local methodology.
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Fig. 2.4 Terminology associated with modeling cutouts.
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Fig. 5.1 Stress concentration factor Kt for axial loading of a

finite-width plate with a transverse hole.
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Fig. 5.2 Coarse global finite element model of isotropic

panel with a circular cutout.
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Fig. 5.3 Longitudinal stress resultant N_ distribution for coarse global

finite element model of isotropic panel with a circular cutout.
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fil_itc clcment model of isotropic panel with a circular cutout.
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Fig. 5.5 Longitudinal inplane stress resultant N. distributions at

panel midlength for coarse and refined global finite element models.
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Fig. 5.7 Global/local analysis models for lsotropic panel with circular cutout.
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Fig. 5.8 Longitudinal stress resultant N= distributions for square local

finite element model of isotropic panel with a circular cutout.
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Fig. 5.8 Concluded.
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Fig. 5.9 Longitudinal stress resultant N. distributions for circular local

finite element model of isotropic panel with a circular cutout.
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Composite blade-stiffened panel with a discontinuous stiffener.
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Fig. 5.14 Global finite element model of blade-stiffened panel with
discontinuous stiffener.
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Fig. 5.15 Longitudinal inplane stress resultant N. distributions at panel

midlength for coarse and refined global models.
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Fig. 5.16 Deformed geometry shape with N= distributions for coarse global

model of blade-stiffened panel with discontinuous stiffener.
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